This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Solvent-Free Conversion of Epoxides to Thiiranes by Thiourea/NH₄Cl System

Behzad Zeynizadeha; Samal Yeghaneha

^a Department of Chemistry, Faculty of Sciences, Urmia University, Urmia, Iran

To cite this Article Zeynizadeh, Behzad and Yeghaneh, Samal(2008) 'Solvent-Free Conversion of Epoxides to Thiiranes by Thiourea/NH₄Cl System', Phosphorus, Sulfur, and Silicon and the Related Elements, 183: 9, 2280 — 2286

To link to this Article: DOI: 10.1080/10426500801960703 URL: http://dx.doi.org/10.1080/10426500801960703

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:2280–2286, 2008

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500801960703

Solvent-Free Conversion of Epoxides to Thiiranes by Thiourea/NH₄Cl System

Behzad Zeynizadeh and Samal Yeghaneh

Department of Chemistry, Faculty of Sciences, Urmia University, Urmia, Iran

Epoxides were readily converted to the corresponding thiiranes by thiourea/ NH_4Cl system under solvent-free conditions. The reactions were completed within 15–75 min at 60–70°C. The thiiranes were obtained in 65–96% yields.

Keywords Ammonium chloride; epoxide; solvent-free; thiirane; thiourea

INTRODUCTION

Thiiranes are the simplest sulfur heterocycles and occur in nature. They are of interest from both theoretical and synthetic point of view and are used in polymer, pharmaceutical, pesticide and herbicide industries. Thiiranes are prepared by various methods. However, the most straight forward synthesis is the conversion of epoxides to thiiranes by an oxygen-sulfur exchange reaction. This transformation has been achieved by several sulfur transfer agents such as thiourea, inorganic thiocyanates, hosphine sulfides, dimethylthioformamide/ CF_3CO_2H , $S/NH_4OAc/(EtO)_2POH$, $P_4S_{10}/NH_4OAc/Al_2O_3^8$ and amethylbenzothiazole-2-thione. Moreover, some of these sulfurating agents in combination with different reagents/catalysts such as ceric ammonium nitrate, $RuCl_3$, $Rucl_3$

Received 12 July 2007; accepted 4 February 2008.

We acknowledge the financial support of this work by the Research Council of Urmia University.

Address correspondence to Behzad Zeynizadeh, Department of Chemistry, Faculty of Sciences, Urmia University, Urmia 57159-165, Iran. E-mail: bzeynizadeh@gmail.com

conversion of epoxides to thiiranes. However, most of these methods suffer from long reaction times, use of organic solvents, acidic, moisture sensitive or expensive reagents/catalysts, tedious work-up procedures, formation of polymeric by-products and low yields.

The toxic and volatile natures of many organic solvents, particularly of chlorinated hydrocarbons, which are widely used in organic synthesis, have posed serious threats to the environment. Consequently, methods that successfully minimize the use of solvents have attracted much attention. Working without solvents has the advantage of a simpler process and smaller plants, and eliminates the energy costs of removal, recycling and eventual disposal of waste solvents.²⁶

As a part of our research program on the synthesis of thiiranes, we report here the efficient conversion of epoxides to thiiranes by the thiourea/NH₄Cl system at $60-70^{\circ}$ C under solvent-free conditions (Scheme 1).

RESULTS AND DISCUSSION

A survey of the literature shows that the solvent-free conversion of epoxides to thiiranes with thiourea has been achieved by thiourea supported on silica gel^{27a} and by thiourea at 120°C.^{27b} Although these methods provide green protocols for the preparation of thiiranes from epoxides, they suffer from high reaction temperature (120°C) or moderate vields (65–88%), however. Because the solvent-free conversion of epoxides to thiiranes in the presence of ammonium salts has not been investigated yet, this idea encouraged us to study the influence of NH₄ ions on the transformation of epoxides to thiiranes. In a preliminary experiment the reaction of phenyl glycidyl ether as a model compound with 2 molar equivalents of thiourea (as sulfur transfer agent) and $(NH_4)_2CO_3$ (0.5 g) was carried out at 60–70°C under solvent-free conditions. The epoxide was converted to the corresponding thiirane in 80% yield within 2.5 h. The influence of NH_4^+ ions in other ammonium salts was studied by performing the reaction in the presence of NH_4NO_3 , NH_4OAc , $(NH_4)_2SO_4$, (NH₄)₂HPO₄, NH₄I, and NH₄Cl. The summarized results in Table I showed that all the ammonium salts had a capability to promote the

R, R': Aryl, alkyl, allyl, H

SCHEME 1

TABLE I Optimization Experiments for the Conversion of Phenyl Glycidyl Ether to the Corresponding Thiirane under Different Conditions

Molar ratio	Ammonium salts (g)	Condition ^a	Time (h)	Conversion (%)
EPOXIDE/thiourea (1:2)	$(NH_4)_2CO_3 (0.5)$	Solvent-free/oil bath	2.5	80
EPOXIDE/thiourea (1:2)	$NH_4NO_3 (0.5)$	Solvent-free/oil bath	2	95
EPOXIDE/thiourea (1:2)	$NH_4OAc~(0.5)$	Solvent-free/oil bath	3	85
EPOXIDE/thiourea (1:2)	$(NH_4)_2SO_4(1)$	Solvent-free/oil bath	2.5	80
EPOXIDE/thiourea (1:2)	$(NH_4)_2HPO_4$ (1)	Solvent-free/oil bath	4	85
EPOXIDE/thiourea (1:2)	$NH_{4}I(0.5)$	Solvent-free/oil bath	1.3	95
EPOXIDE/thiourea (1:2)	$NH_4C1 (0.5)$	Solvent-free/oil bath	1.3	100
EPOXIDE/thiourea (1:2)	$NH_4C1(1)$	Solvent-free/oil bath	2.5	90
$EPOXIDE/NH_4SCN$ (1:2)	$NH_4C1 (0.5)$	Solvent-free/oil bath	1.3	70
EPOXIDE/thiourea (1:2)	$NH_4C1 (0.5)$	CH ₃ CN/reflux	3	20
EPOXIDE/thiourea~(1:2)	$NH_4C1\ (0.5)$	Solvent-free/microwave	$5 \min$	5

^aTemperature of oil bath was 60–70°C.

conversion of phenyl glycidyl ether to the corresponding thiirane with a yield above 80%. Among them NH_4NO_3 , NH_4I and NH_4Cl showed the best efficiency. The shorter reaction time and the complete conversion of phenyl glycidyl ether to the respective thiirane prompted us to select NH_4Cl as the best promoter for this transformation (Table I). Thiourea under the same reaction conditions showed the better efficiency than NH_4SCN as a sulfur transfer reagent (Table I).

Next, we investigated the influence of NH_4Cl under the optimized conditions on the conversion of mono or disubstituted epoxides to thiiranes bearing electron donating or electron withdrawing groups. Aryl, alkyl, allyl and sterically hindered epoxides reacted smoothly with thiourea to produce the corresponding thiiranes in good to excellent yields (65–96%). The reactions were completed within 30–55 min. Table II clearly indicates the scope and generality of this synthesis. In the case of cyclohexene epoxide, the reaction with thiourea gave the thiirane in a poor yield; however, NH_4SCN showed a better efficiency (Table II). In order to highlight the efficiency of our synthetic method, we compared some of our results with those of achieved by thiourea/silica gel^{27a} and thiourea/120°C^{27b} (Table III). The results show, that our protocol is more efficient than the reported methods. The exact mechanism of this synthesis is not known. A possible mechanism is presented in Scheme 2.

In conclusion, we have shown that structurally different epoxides are easily and efficiently converted to the corresponding thiiranes with the NH_2CSNH_2/NH_4Cl system under solvent-free conditions. The

TABLE II Conversion of Epoxides to Thiiranes in the Presence of NH_4Cl under Solvent-Free Conditions^a

					or Bp nm Hg
Epoxide	Thiirane	Time (min)	$Yield\ (\%)^b$	Found	Reported
Ph	Ph	30	95	85–86/5	85-86/5 ^[23]
PhO	PhO	75	94	105-106/1	106/1 ^[28]
≫ 0	≫ 0 ~ S	15	93	77–78/8	78-79/8[23]
0	S	55	95	43-44/0.16	43/0.16 ^[23]
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	30	96	55/11	54/11 ^[28]
	\bigvee_{0}^{0}	35	94	_	_
O	s	40	65°	55/7	55-56/7 ^[23]
o	s	35	92	71–72/2	71/2 ^[29]
O Ph Ph	S Ph Ph	45	96	53–54	53-54 ^[30]
Ph Ph	Ph Ph	40	94	76–77	77–78 ^[30]

 $[^]aAll$ reactions were carried out with the molar ratio of epoxide:thiourea (1:2) in the presence of NH₄Cl (0.5 g) in an oil bath at 60–70°C. bYields refer to isolated pure products. cIn this reaction NH₄SCN was used as sulfur transfer reagent.

cheapness and availability of the reagents, the mild reaction conditions, the high yields of the thiiranes, the simple work-up procedure as well as the advantages of working under solvent-free conditions make this method a useful addition to the present methodologies.

EXPERIMENTAL

All reagents and substrates were purchased from commercial sources with the best quality and were used without further purification. IR and ¹H NMR spectra were recorded on Thermo Nicolet Nexus

TABLE III Comparison of Solvent-Free Conversion of Epoxides to Thiiranes with $Thiourea^{a}$

		Thiourea/NH $_4$ Cl	/NH4Cl		Thic	Thiourea/Silica gel ^[27a]	lica gel [[]	27a]	$\rm Thiourea/120{}^{\circ}\rm C^{(27b)}$	a/120°C	[27b]
Epoxide	Thiourea NH_4Cl Time Yield (mmol) (g) (min) (%)	Thiourea NH ₄ Cl Time (mmol) (g) (min)	Time (min)	Yield (%)	Thiourea Silica Time (mmol) (g) (min)	Silica (g)	Time Yield (min) (%)	Yield (%)	Thiourea (mmol)	Time Yield (min) (%)	Yield (%)
Ph O	2	0.5	30	95	2	2.8	S	98	2	15	65
Pho	2	0.5	75	94	2	2.8	Ś	06	2	15	84
	2	0.5	15	93	2	2.8	8	88	2	09	77
	7	0.5	30	96	7	2.8	т	80	7	09	80

^aAll reactions were carried out with 1 mmol of epoxide under the defined conditions.

SCHEME 2

 $670 \, \mathrm{FT}\text{-}\mathrm{IR}$ spectrophotometer and a $300 \, \mathrm{MHz}$ Bruker Avance spectrometer, respectively. The products were characterized by their $^1\mathrm{H}$ NMR or IR spectra. All yields refer to isolated pure products. TLC over silica gel $60 \, \mathrm{F}_{254}$ aluminum sheet was applied for the purity determination of the substrates, products, and for reaction monitoring.

General Procedure for Conversion of Epoxides to Thiiranes with the NH₂CSNH₂/NH₄Cl System under Solvent-Free Conditions

In an experimental tube, an epoxide (1 mmol), thiourea (0.152 g, 2 mmol) and NH₄Cl (0.5 g) was well mixed and then the tube was placed in an oil bath at 60–70°C for the appropriate time mentioned in Table II. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was extracted with CH₂Cl₂ (3 \times 5 mL). Evaporation of the solvent from the combined extracts affords the pure thiirane in 65–96% yield.

REFERENCES

- D. C. Ditter, A. R. Katritzky, and C. W. Rees, Thiiranes and Thiirenes, in Comprehensive Heterocyclic Chemistry (Pergamon, New York, 1984).
- [2] (a) M. Sander, Chem. Rev., 66, 297 (1966); (b) E. Vedejs and G. A. Krafft, Tetrahedron, 38, 2857 (1982).
- [3] (a) H. Bouda, M. E. Borredon, E. Delmas, and A. Gaset, Synth. Commun., 19, 491 (1989); (b) R. Ketcham and V. P. Shah, J. Org. Chem., 28, 229 (1963).
- [4] K. Jankowski and R. Harvey, Synthesis, 627 (1972).

- [5] (a) A. C. Korn and L. Moroder, J. Chem. Res., 102 (1995); (b) T. H. Chan and J. R. Finkenbine, J. Am. Chem. Soc., 94, 2880 (1972).
- [6] T. Takido, Y. Kobayashi, and K. Itabashi, Synthesis, 779 (1986).
- [7] B. Kaboudin and H. Nourouzi, Tetrahedron Lett., 45, 1283 (2004).
- [8] B. Kaboudin and H. Norouzi, Synthesis, 2035 (2004).
- [9] V. Calo, L. Lopez, L. Marches, and G. Pesce, J. Chem. Soc. Chem. Commun., 621 (1975).
- [10] N. Iranpoor and F. Kazemi, Synthesis, 821 (1996).
- [11] N. Iranpoor and F. Kazemi, *Tetrahedron*, **53**, 11377 (1997).
- [12] (a) I. Mohammadpoor-Baltork and H. Aliyan, Synth. Commun., 28, 3943 (1998); (b)
 I. Mohammadpoor-Baltork and A. R. Khosropour, Molecules, 996 (2001).
- [13] N. Iranpoor and B. Zeynizadeh, Synth. Commun., 28, 3913 (1998).
- [14] J. S. Yadav, B. V. S. Reddy, and G. Baishya, Synlett, 396 (2003).
- [15] K. Surendra, N. S. Krishnaveni, and K. R. Rao, Tetrahedron Lett., 45, 6523 (2004).
- [16] M. Moghadam, S. Tangestaninejad, V. Mirkhani, and R. Shaibani, *Tetrahedron*, 60, 6105 (2004).
- [17] B. P. Bandgar, N. S. Joshi, and V. T. Kamble, Tetrahedron Lett., 47, 4775 (2006).
- [18] P. Salehi, M. M. Khodaei, M. A. Zolfigol, and A. Keyvan, Synth. Commun., 33, 3041 (2003).
- [19] B. Yadollahi, S. Tangestaninejad, and M. H. Habibi, Synth. Commun., 34, 2823 (2004).
- [20] M. O. Brimeyer, A. Mehrota, S. Quici, A. Nigam, and S. L. Regen, J. Org. Chem., 45, 4254 (1980).
- [21] B. Tamami and A. R. Kiasat, Synth. Commun., 26, 3953 (1996).
- [22] N. Iranpoor, B. Tamami, and M. Shekarriz, Synth. Commun., 29, 3313 (1999).
- [23] B. Tamami and K. Parvanak Borujeny, Synth. Commun., 34, 65 (2004).
- [24] B. Tamami and M. Kolahdoozan, Tetrahedron Lett., 45, 1535 (2004).
- [25] J. S. Yadav, B. V. S. Reddy, C. S. Reddy, and K. Rajasekhar, J. Org. Chem., 68, 2525 (2003).
- [26] K. Tanaka, Solvent-free Organic Synthesis (Wiley, New York, 2003).
- [27] (a) N. Iranpoor, H. Firouzabadi, and A. A. Jafari, Phosphorus, Sulfur, and Silicon, 180, 1809 (2005); (b) A. Kiasat, F. Kazemi, and M. Jardi, Phosphorus, Sulfur, and Silicon, 179, 1841 (2004).
- [28] R. D. Schuetz and R. L. Jacobs, J. Org. Chem., 26, 3467 (1961).
- [29] D. J. Pettitt and G. K. Helmkamp, J. Org. Chem., 29, 2702 (1964).
- [30] R. Ketcham and V. P. Shah, J. Org. Chem., 28, 229 (1963).